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Lag length selection in vector autoregressive
models: symmetric and asymmetric lags

OMER OZCICEK* and W. DOUGLAS McMILLIN ³

*Istanbul Bilgi University, Istanbul, Turkey and ³ Department of Economics, L ouisiana
State University, Baton Rouge, LA 70603-6306, USA

This study used Monte Carlo simulations to study the performance of alternative lag
selection criterion for symmetric lag and asymmetric lag vector autoregressive models.
Lag models with short lags and with long lags were considered. The alternative
criteria considered were the AIC, SIC, Phillips’ Posterior Information Criterion, and
Keating’s modi® cation of the AIC and SIC. The alternative criteria were evaluated by
computing the frequency distribution of lags selected, by computing the out-of-sample
forecasting performance of models with lags selected using each criterion, and by
comparing the ability of models with lags selected using each criterion to mimic the
t̀rue’ impulse response functions for the lag model.

I. INTRODUCTION

Vector autoregressive (VAR) models are widely used in
forecasting and in analysis of the e� ects of structural shocks.
A critical element in the speci® cation of VAR models is the
determination of the lag length of the VAR. The importance
of lag length determination is demonstrated by Braun and
Mittnik (1993) who show that estimators of a VAR whose
lag length di� ers from the true lag length are inconsistent as
are the impulse response functions and variance decomposi-
tions derived from the estimated VAR. LuÈ tkepohl (1993)
indicates that over® tting (selecting a higher order lag length
than the true lag length) causes an increase in the mean-
square-forecast errors of the VAR and that under® tting the
lag length often generates autocorrelated errors. Hafer and
Sheehan (1989) ® nd that the accuracy of forecasts from VAR
models varies substantially for alternative lag lengths.

Most VAR models are estimated using symmetric lags, i.e.
the same lag length is used for all variables in all equations
of the model. This lag length is frequently selected using an
explicit statistical criterion such as the AIC or SIC. Symmet-
ric lag VAR models are easily estimated; since the speci® ca-
tion of all equations of the model is the same, estimation by
ordinary least squares yields e� cient parameter estimates.
However, there is no compelling reason from economic
theory that lag lengths should be the same for all variables
in all equations. In fact, Hsiao (1981) suggested estimating
VARs in which the lag length on each variable in each

equation could di� er. The issue of whether VARs should be
estimated using symmetric or asymmetric lags has recently
been resurrected by Keating (1993, 1995). He suggested
estimating asymmetric lag VAR models in which the lag
length potentially di� ers across the variables in the model
but is the same for a particular variable in each equation of
the model. He demonstrated that this pattern of asymmetry
can be derived from a structural representation of the VAR
model that has asymmetric lags. In the Keating-type asym-
metric lag model, the speci® cation of each equation is the
same, so the VAR can be estimated using ordinary least
squares. Within the context of a small structural VAR
model, Keating (1995) found that estimates of long-run
structural parameters typically had smaller standard errors
for his asymmetric lag VAR than for a symmetric lag VAR
and that the con® dence intervals for impulse response func-
tions and variance decompositions for an asymmetric lag
VAR were smaller than for a symmetric lag VAR.

Given the demonstrated importance of lag length selec-
tion for VAR models, the aim of this paper is to examine the
performance of alternative lag selection criteria for VAR
models using Monte Carlo simulations. Although the per-
formance of alternative statistical criterion for lag length
selection of symmetric lag VARs has been studied by,
among others, LuÈ tkepohl (1993), the performance of statist-
ical lag selection criteria in selecting lag lengths for asym-
metric lag VAR models has not been studied. The lag
selection criteria considered include Akaike’s information
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1 Although Hsiao’s technique of lag length selection has been used in the literature (see, for example, Caines et al. (1981) and McMillin and
Fackler (1984)), the implementation of this criterion is problematic in the sense that lag length determination is often sensitive to the order
in which variables are considered. Caines et al. (1981) attempted to deal with this problem by suggesting a criterion ± the speci® c-gravity
criterion ± for selecting the order in which the lag length of the model’s variables is determined. We also note that, since the speci® cation of
each equation of the model is di� erent, estimation using ordinary least squares is not appropriate . Because an extensive iterative procedure
is required to appropriately specify a Hsiao-type model even when the speci® c gravity criterion is applied (see McMillin and Fackler, 1984),
this type of model is not considered in our Monte Carlo study.
2 This will be true as long as none of the elements in U ± 1

0 are zero. If U ± 1
0 has a zero element(s), then it is possible for a particular variable to

have di� erent lag lengths in di� erent equations of the model.

criterion (AIC), Schwarz’s information criterion (SIC),
Phillips’ posterior information criterion (PIC), and Keat-
ing’s (1995) application of the AIC and SIC criterion (KAIC
and KSIC).1 Four di� erent bivariate lag models are exam-
ined; two are symmetric lag models and two are asymmetric
lag models. In the spirit of Kennedy and Simons (1991), the
parameter settings used in the simulations of the lag models
were obtained from estimates of ten di� erent bivariate mod-
els estimated from actual economic data.

The remainder of the study is now outlined. Section II of
the paper describes the empirical methodology while the
empirical results are reported in Section III. Section IV
provides a summary and conclusion.

II . METHODOLOGY

Monte Carlo simulations of 1000 draws are used to evaluate
the performance of the alternative lag selection criterion in
bivariate VAR models. The VARs are simulated using pre-
speci® ed model parameters (which ensure stationarity), pre-
speci® ed lag length, and a random number generator. The
alternative lag selection criteria are evaluated by computing
the frequency distributions of lag lengths selected by each
lag selection criterion. Four di� erent bivariate lag models
are considered. The out-of-sample forecasting performance
of the models selected by each lag selection criterion are also
examined, as is the ability of each lag selection criterion to
generate impulse response functions that mimic the true
impulse response function.

The lag selection criterion are the AIC, SIC, PIC, and
Keating’s (1995) procedure using, alternatively, the AIC and
SIC criterion to select the lag order. The AIC and SIC are
well-known and the de® nition of each is presented without
discussion:

AIC = ln | S Ä | +
2
T

(number of freely estimated parameters)

SIC = ln | S Ä | +
ln T
T

(number of freely estimated parameters)

where S Ä is estimated covariance matrix and T is number of
observations.

Phillips (1994) has recently proposed another lag speci-
® cation criterion called the posterior information criterion
(PIC). Phillips derived the PIC from Bayesian analysis in
which ¯ at priors were imposed on the parameters to ® nd the
posterior distributions. The PIC is de® ned as:

PIC = ln | S Ä | +
1
T

| S Ä ± 1 # X9 X |

where # is the Kronecker product operator and X is the
matrix of explanatory variables.

Keating’s insight about asymmetric lags can be developed
in the following way. Let

U (L )yt = C + e t (1)

be a structural model where yt = N3 1 vector of endo-
genous variables , C = N3 1 vector of constants, e t = N3 1
vector of white-noise error terms which are distributed as
multivariate normal with covariance matrix s 2 I,
U (L ) = N3 N lag polynomial matrix with the ith row and
jth column de® ned as

U ij (L ) = u 0 ij + u 1 ijL + u 2 ijL
2 + ¼ + u ni ji j

L nij

If nij di� ers for each element, the structural model is said to
have asymmetric lags.

The reduced-form VAR representation of this model can
be obtained by premultiplying (1) by U ± 1

0 (the inverse of the
contemporaneous coe� cient matrix). We obtain:

b (L )yt = D + et

where b (L ) = U ± 1
0 U (L ) with the kth and jth element

b kj (L ) = + N
i = 1 U ki

0 U ij (L ), D = U ± 1
0 C, and et = U ± 1

o e t .
The b kj are thus linear combinations of the structural lag

polynomials. The lag length of b kj is the largest value of
n1 ,n2 , ¼ , nNj . If the lags in the structural model are all the
same length, the same will be true in the reduced form
model. However, if the structural model is characterized by
asymmetric lags, then a particular variable will have the
same lag length in each equation of the reduced-form VAR
model, although the lag length will vary across variables.2

Given this type of asymmetric lag structure in the VAR,
Keating (1995) suggests computing AIC and SIC statistics
for every possible combination of lag lengths in order to
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3 The coe� cient estimates are available upon request, as are all the RATS programs used in the analysis.
4 See, for example, Bernanke (1986) and Blanchard and Quah (1989).

determine the lag structure of the VAR. A systematic search
can be set up by varying the lag length of each variable
between 1 and M, which requires MN estimates of the VAR.
The lag structure that generates the minimum AIC or SIC is
selected as the optimal lag structure.

The bivariate VAR lag models consist of two symmetric
lag models and two asymmetric lag models. Lag model one
(LM1) has 3 lags on each variable in each equation while lag
model two (LM2) has 8 lags on each variable in each
equation. Lag model three (LM3) has 3 lags on variable one
in each equation and 1 lag of variable two in each equation;
lag model four (LM4) has 8 lags on variable one and 5 lags
on variable two. The asymmetric lag models are thus of the
form discussed by Keating in which the lags across variables
are di� erent, but the lags for a particular variable are the
same in each equation.

For each lag model, the prespeci ® ed parameters used in
the simulations were obtained by estimating ten di� erent
models using actual economic data. The stationarity of the
models was checked by computing the roots of the charac-
teristic polynomial of the model; the results indicated all
models were stationary. The variables in these models and
the transformations necessary to generate parameters that
yielded stationarity are listed in the Appendix. The data for
the Monte-Carlo simulations were generated in the follow-
ing way. The parameter estimates of these models were
taken, in turn, as the t̀rue’ parameter values of the lag
model.3 The et were selected as a random draw from a nor-
mal distribution with mean 0 and variance-covariance
matrix equal to the estimated variance-covariance matrix of
the model. A total of 212 observations from these stationary
processes were generated in this fashion, with the ® rst 74
discarded. The lag selection criteria described above were
then used to specify the lag length using observations
75 ± 200. The remaining 12 observations were used in an
out-of-sample forecasting comparison. In applying the lag
selection criterion, a maximum of 8 lags was considered for
LM1 and LM3, and a maximum of 16 lags was considered
for lag models LM2 and LM4.

The Monte Carlo simulations employed 1000 draws for
each of the ten parameter settings used for each lag model.
The frequency distribution of lags selected by each criterion
for each of the parameter settings used for each lag model
was computed, and, for each lag model, the results across
parameter settings were averaged in order to conserve
space. For each draw, out-of-sample forecasts at horizons of
1 to 12 periods, and their associated mean-square-errors,
were computed. Also, for each draw of the Monte Carlo
simulation, the impulse response functions (IRFs) were
computed. Since we were working with bivariate models,
four IRFs were computed; one for the e� ects of a shock to

variable one on itself, one for the e� ects of a shock to
variable one on variable two, and two analogous IRFs for
variable two. The IRFs were computed by ® rst ortho-
gonalizing the shocks using the Choleski decomposition
with variable one ordered ® rst. This orthogonalization
scheme attributes all the contemporaneous correlation be-
tween the two variables in the system to the one ordered
® rst. Other orthogonalization schemes use either short-run
or long-run restrictions from economic theory to identify
structural shocks to the variables in the model.4 However,
since we are not attempting any inference about economic
e� ects of structural shocks or the impact of policy variables,
the Choleski decomposition is suitable for our purposes.
The t̀rue’ IRFs were computed for each of the four lag
models for each of the ten parameter settings.

III. RESULTS

Frequency-distribution results

These results are reported in Tables 1± 4. For LM1, a sym-
metric lag model with lag length of 3 for each variable, we
see that the AIC criterion selected the true lag approxim-
ately 60% of the time; a shorter lag was selected approxim-
ately 30% of the time. Keating’s method that used the AIC
(KAIC) to select each variable’ s lag length selected the
correct lag of 3 approximately 40% of the time, but also
selected shorter lags (1 or 2) approximately 40% of the time.
The SIC and PIC selected a lag of 1 approximately 70% of
the time; the correct lag of 3 was selected only about 15% of
the time. The performance of Keating’s method that used
the SIC (KSIC) to select each variable’ s lag length was
similar to that of the SIC and PIC. A lag of 1 for variable
one was selected approximately 70% of the time while a lag
of 1 for variable two was selected approximately 60% of the
time. Thus, for this symmetric lag model, the AIC-based
criteria picked the correct lag more frequently than did the
other criteria.

LM2 is a symmetric lag model with a common lag of 8. As
in the previous symmetric lag model, the AIC-based criteria
selected the correct lag most frequently, although the fre-
quency with which this lag is selected is smaller than for lag
model one. The AIC selected a lag of 8 approximately 37%
of the time while the KAIC selected a lag of 8 for variable
one 26% of the time and for variable two approximately
20% of the time. The SIC and PIC selected a lag of one
about 60% of the time, and the KSIC selected a lag of one
for both variables with about the same frequency.

LM3 is an asymmetric lag model with 3 lags on variable
one and 1 lag on variable two. The KAIC did best for this
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Table 1. Frequency distribution: Model 1 (3, 3)

KAIC variable KSIC variable
Lag AIC SIC PIC 1 2 1 2

1 12.3 70.2 73.2 28.6 21.6 70.2 60.4
2 17.8 13.5 12.9 15.4 18.3 17.6 14.3
3 57.3 16.3 14.0 39.5 43.1 12.0 24.7
4 8.1 0.0 0.0 8.6 8.2 0.2 0.6
5 2.6 0.0 0.0 3.7 3.9 0.0 0.0
6 1.0 0.0 0.0 1.9 2.3 0.0 0.0
7 0.6 0.0 0.0 1.4 1.4 0.0 0.0
8 0.4 0.0 0.0 1.0 1.3 0.0 0.0

Table 2. Frequency distribution: Model 2 (8, 8)

KAIC variable KSIC variable
Lag AIC SIC PIC 1 2 1 2

1 3.5 58.4 61.4 9.5 9.5 57.6 56.2
2 5.1 10.8 11.0 6.0 7.1 9.9 13.7
3 8.0 13.7 13.5 9.2 13.9 10.3 21.6
4 7.4 6.4 6.3 9.1 9.4 5.8 4.5
5 9.5 5.3 4.6 10.5 8.8 4.9 2.1
6 9.8 1.1 1.0 8.1 8.7 1.1 0.7
7 8.1 0.1 0.1 5.0 10.3 0.1 0.6
8 37.3 4.3 2.2 26.3 19.6 9.7 0.7
9 6.0 0.0 0.0 6.5 4.9 0.5 0.0

10 2.3 0.0 0.0 3.6 2.5 0.1 0.0
11 1.3 0.0 0.0 2.1 1.9 0.0 0.0
12 0.6 0.0 0.0 1.7 1.2 0.0 0.0
13 0.5 0.0 0.0 1.0 0.9 0.0 0.0
14 0.3 0.0 0.0 0.6 0.5 0.0 0.0
15 0.2 0.0 0.0 0.5 0.5 0.0 0.0
16 0.2 0.0 0.0 0.4 0.5 0.0 0.0

Table 3. Frequency distribution: Model 3 (3, 1)

KAIC variable KSIC variable
Lag AIC SIC PIC 1 2 1 2

1 34.4 73.9 75.1 23.8 76.4 55.8 98.6
2 31.8 25.0 24.1 25.8 11.4 33.4 1.2
3 26.2 1.1 0.8 35.6 5.3 10.8 0.2
4 4.7 0.0 0.0 7.4 3.0 0.1 0.0
5 1.6 0.0 0.0 3.5 1.8 0.0 0.0
6 0.8 0.0 0.0 1.8 0.9 0.0 0.0
7 0.4 0.0 0.0 1.2 0.6 0.0 0.0
8 0.2 0.0 0.0 0.9 0.6 0.0 0.0

lag model, selecting the correct lag on variable one 36% of
the time and the correct lag on variable two 76% of the
time. KSIC selected a lag of 1 for both variables most
frequently; for variable one, a lag of 1 was selected 56% of
the time while for variable two a lag of 1 was selected 99% of
the time. The standard AIC, SIC, and PIC criteria are at
a disadvantage for this model since they select a common
lag for all variables in the model. These three criteria all

selected a lag of 1, the shortest lag in the model, most
frequently. However, the AIC selected this length about
35% of the time while the SIC and PIC selected this length
about 75% of the time.

The last lag model is an asymmetric lag model with a lag
of 8 for variable one and a lag of 5 for variable two. The
results are similar to LM3. KAIC did best; the correct lag of
8 for variable one was selected about a quarter of the time,
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Table 4. Frequency distribution: Model 4 (8, 5)

KAIC variable KSIC variable
Lag AIC SIC PIC 1 2 1 2

1 3.8 64.5 68.4 8.8 11.3 64.0 52.9
2 5.3 15.5 14.9 4.5 10.7 16.9 15.6
3 14.1 15.2 13.5 8.5 21.5 10.0 22.8
4 12.9 3.4 2.6 10.9 15.3 4.3 4.0
5 22.8 1.3 0.6 11.2 23.6 1.8 4.4
6 14.8 0.2 0.1 11.9 6.7 2.2 0.2
7 6.9 0.0 0.0 8.0 3.6 0.4 0.0
8 14.0 0.0 0.0 23.7 2.8 0.5 0.0
9 2.6 0.0 0.0 5.3 1.4 0.0 0.0

10 1.2 0.0 0.0 2.8 1.1 0.0 0.0
11 0.7 0.0 0.0 1.7 0.7 0.0 0.0
12 0.3 0.0 0.0 1.0 0.5 0.0 0.0
13 0.2 0.0 0.0 0.7 0.3 0.0 0.0
14 0.2 0.0 0.0 0.5 0.2 0.0 0.0
15 0.1 0.0 0.0 0.4 0.2 0.0 0.0
16 0.1 0.0 0.0 0.4 0.2 0.0 0.0

as was the correct lag of 5 for variable two. KSIC selected
a lag of 1 for both variables; for variable one, this length was
selected about 64% of the time while this length was se-
lected for variable two about 53% of the time. The AIC
selected the shortest of the true lag lengths, 5, about a
quarter of the time, while the SIC and PIC selected a lag of
1 most frequently.

Several regularities stand out. Looking across both sym-
metric lag and asymmetric lag models, the KAIC did best in
the sense that the most frequently selected lags are the true
lags for both types of lag models. For symmetric lag models,
AIC did best, selecting the common lag more frequently
than KAIC. For asymmetric lag models, AIC selected the
shortest lag in the lag model most frequently. As one would
expect from previous studies, the SIC-based criteria typi-
cally selected much shorter lags than AIC-based criteria. In
fact, for all models studied, the SIC-based criteria selected
a lag of 1 most frequently. The performance of PIC was very
similar to that of SIC. Based upon these results, it appears
that one should seriously consider KAIC as a lag speci® ca-
tion criterion.

Forecast results

A comparison of the out-of-sample forecasting results for
the alternative lag selection criteria is presented in Table 5.
The results for each lag model are presented separately. The
numbers in this table are the ratio of the average mean-
square forecasting error for the criterion listed at the top of
the columns to the average mean-square forecasting error
for the AIC criterion. Scaling in this fashion generates a unit
free measure and enables us to average the mean-square-
error over the ten di� erent parameter settings used for each
lag model. Three horizons are presented; 3 months,
6 months, and 12 months. Formally, the numbers were

calculated for lag model m for horizon 3 as (using the SIC
and AIC results as a speci® c example):

1 1
3

3

+
h= 1

1
10

1 0

+
c= 1

SICFh
m , c2 / 1 1

3

3

+
h= 1

1
10

1 0

+
c= 1

AICFh
m , c2

where SICF is mean-square forecasting error for the SIC
criterion, averaged over 1000 draws, and AICF is mean-
square forecasting error for the AIC criterion, averaged over
1000 draws. Similar calculations were made for horizons
6 and 12 and for the other lag selection criterion.

From Table 5 it can be seen that the models with lag
lengths speci® ed by SIC, PIC, KAIC, and KSIC did slightly
better than the model speci® ed using the AIC criterion for
the short-lag lag models (LM1 and LM3) as indicated by
ratios which are almost always below 1. There is little
di� erence in the results across lag selection criterion, how-
ever. For the lag models with longer lags, LM2 and LM4,
the AIC-speci® ed lag lengths almost always did better than
the other criterion. The di� erence was more marked for the
SIC and PIC results. Somewhat surprisingly in light of the
frequency-distribution results, KSIC and KAIC performed
about the same in ability to forecast out-of-sample for these
longer-lag models. Furthermore, they generally do only
marginally worse than AIC.

Impulse response function results

For each draw of our Monte Carlo simulations, IRFs were
computed for the lags speci® ed by each lag selection cri-
terion. The mean-square-error for the di� erence between the
IRFs generated from the true lag length and the IRFs
generated for the lags speci® ed by a particular lag selection
criterion was then computed. These mean-square-errors
were then averaged over the ten parameter settings used for
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Table 5. Forecast mean-square errorsa

SIC variable PIC variable KAIC variable KSIC variable
Horizon 1 2 1 2 1 2 1 2

Model 1 (3,3)
3 1.003 0.997 1.005 0.994 1.002 1.011 1.020 1.006
6 0.991 0.996 0.990 0.995 0.999 1.008 0.996 1.000

12 0.989 0.998 0.988 0.997 1.002 1.005 0.989 0.999

Model 2 (8,8)
3 1.023 1.021 1.025 1.024 1.001 1.024 0.987 1.010
6 1.016 1.012 1.021 1.014 1.002 1.019 0.989 1.008

12 1.008 1.001 1.009 1.002 1.009 1.010 0.997 0.998

Model 3 (3,1)
3 0.987 0.993 0.983 0.993 0.995 0.994 0.980 0.989
6 0.986 0.992 0.984 0.992 0.997 0.996 0.989 0.990

12 0.987 0.996 0.987 0.996 0.999 0.998 0.992 0.995

Model 4 (8,5)
3 1.071 1.031 1.076 1.031 1.018 1.003 1.073 1.023
6 1.047 1.012 1.052 1.012 1.021 1.001 1.042 1.004

12 1.026 1.004 1.031 1.004 1.014 1.003 1.018 1.000

Note: aThe numbers in the table are ratios of the forecast mean-square errors for the lag selection technique indicated to the forecast
mean-square errors for the AIC.

each lag model. Formally, the numbers were calculated for
lag model m for horizon 6 as (using the SIC and AIC results
as a speci® c example):

1 1
6

6

+
h= 1

1
10

1 0

+
c= 1

SICIRFh
m , c 2 / 1 1

6

6

+
h= 1

1
10

1 0

+
c= 1

AICIRFh
m , c2

where h is horizon length, c is parameter setting index
[1, ¼ , 10], m is lag model [1, ¼ , 4], SICIRF is mean-
square impulse response function error for the SIC criterion,
averaged over 1000 draws, and AICIRF is mean-square
impulse response function error for the AIC criterion, aver-
aged over 1000 draws. Similar calculations are made for
horizons 12 and 24 and for the other lag selection criterion.
The results are reported in Tables 6 and 7.

For LM1, the short-lag symmetric-lag model, we see that
no one lag selection criterion consistently outperformed the
others. The SIC, PIC, KAIC, and KSIC did better than the
AIC for the e� ects of a shock to variable one on itself, but
AIC did better for the e� ects of a shock to variable two on
variable one and for the e� ects of a shock to variable one on
variable two. The results for a shock to variable two on itself
were mixed. A clearer pattern is present for LM2, the long-
lag symmetric-lag model. The AIC generally outperformed
the SIC and PIC by a large margin. However, the results for
KAIC and KSIC relative to AIC were mixed.

For the lag model with short asymmetric lags (LM3), the
SIC, PIC, and KSIC generally outperformed both the AIC
and KAIC, often by large margins. This is perhaps not too
surprising since SIC, PIC, and KSIC tended to select short
lags frequently. However, the results are dramatically di� er-

ent when the lag model with long asymmetric lags (LM4) is
considered. In this case, the AIC outperformed the SIC,
PIC, and KSIC in all cases, generally by a large margin.
Additionally, the AIC outperformed the KAIC about half
the time.

III. SUMMARY AND CONCLUSION

This study used Monte Carlo simulations to study the
performance of alternative lag selection criterion for sym-
metric lag and asymmetric lag models. Lag models with
short lags and with long lags were considered. The alterna-
tive criteria considered were the AIC, SIC, Phillips’ (1994)
Posterior Information Criterion (PIC), and Keating’s modi-
® cation of the AIC and SIC (KAIC and KSIC, respectively).
The alternative criteria were evaluated by computing the
frequency distribution of lags selected by each criterion, by
computing the out-of-sample forecasting performance of
models with lags selected using each criterion, and by com-
paring the ability of models with lags selected using each
criterion to mimic the t̀rue’ impulse response functions for
the lag model.

In terms of frequency distribution results, the AIC cri-
terion dominated for the symmetric lag models in the sense
that the AIC selected the true lags more frequently than the
other criteria. The KAIC performed similarly for the asym-
metric lag models. Furthermore, considering both symmet-
ric and asymmetric lag models, the KAIC did best in that
the most frequently selected lags are the true lags for both
types of lag models. This is an important result since one
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Table 6. Impulse response function mean-square errorsa Model 1 (3,3)

SIC variable PIC variable KAIC variable KSIC variable
Horizon 1 2 1 2 1 2 1 2

Model 1 (3,3)

Shock to variable 1/e� ects on variables 1 and 2
6 0.917 1.050 0.920 1.051 0.997 1.047 1.016 1.133

12 0.874 1.012 0.856 1.013 0.968 1.087 0.894 1.096
24 0.872 1.005 0.856 1.006 0.994 1.089 0.880 1.088

Shock to variable 2/e� ects on variables 1 and 2
6 1.347 1.002 1.467 1.006 1.125 1.039 2.506 0.983

12 1.193 0.967 1.270 0.971 1.103 1.071 1.997 0.939
24 1.142 0.998 1.210 1.004 1.101 1.073 1.882 0.948

Model 2 (8,8)

Shock to variable 1/e� ects on variables 1 and 2
6 1.432 1.253 1.571 1.263 0.971 0.957 0.819 1.304

12 1.214 1.150 1.282 1.155 0.988 0.989 0.888 1.172
24 1.121 1.105 1.175 1.112 1.007 0.980 0.929 1.128

Shock to variable 2/e� ects on variables 1 and 2
6 1.190 1.366 1.280 1.393 0.957 1.099 0.942 1.299

12 1.010 1.305 1.038 1.320 0.989 1.074 0.957 1.244
24 1.000 1.200 1.024 1.213 0.980 1.073 0.887 1.145

Note: aThe numbers in the tables are the ratios of the impulse response function mean-square errors for the lag selection technique
indicated to the impulse response function mean-square errors for the AIC.

Table 7. Impulse response function mean-square errorsa

SIC variable PIC variable KAIC variable KSIC variable
Horizon 1 2 1 2 1 2 1 2

Model 3 (3,1)

Shock to variable 1/e� ects on variables 1 and 2
6 0.993 1.038 1.002 1.031 0.982 0.952 0.990 1.027

12 0.921 0.982 0.920 0.975 0.974 0.996 0.994 0.984
24 0.898 0.977 0.897 0.970 0.996 1.001 0.975 0.980

Shock to variable 2/e� ects on variables 1 and 2
6 0.559 0.661 0.535 0.650 0.751 0.799 0.542 0.596

12 0.520 0.640 0.497 0.630 0.768 0.826 0.522 0.586
24 0.514 0.642 0.493 0.632 0.775 0.835 0.524 0.590

Model 4 (8,5)

Shock to variable 1/e� ects on variables 1 and 2
6 2.032 1.349 2.008 1.366 0.861 0.969 1.663 1.304

12 4.670 1.258 5.224 1.268 0.925 0.996 2.243 1.250
24 3.677 1.221 4.083 1.231 0.965 1.024 1.867 1.216

Shock to variable 2/e� ects on variables 1 and 2
6 1.149 1.542 1.230 1.585 0.959 1.110 3.533 1.414

12 1.340 1.301 1.433 1.332 1.186 1.037 3.461 1.163
24 1.232 1.207 1.304 1.234 1.124 1.033 2.849 1.096

Note: aThe numbers in the table are the ratios of the impulse response function mean-square errors for the lag selection technique indicated
to the impulse response function mean-square errors for the AIC.

does not generally know whether the true model has sym-
metric or asymmetric lags or short or long lags.

The results are more ambiguous in terms of forecasting
performance. For the short-lag models, both symmetric and

asymmetric, the SIC, PIC, KAIC, and KSIC slightly outper-
form the AIC, but the di� erence is small. For the longer-lag
models with both symmetric and asymmetric lags, the AIC-
speci® ed lag length models almost always forecast better
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than the other criterion, especially the SIC and PIC. The
KAIC and KSIC generally do only marginally worse for
these longer-lag models than the AIC. Given the inherent
uncertainty about the true lag length and whether the lags
are symmetric or asymmetric, these results suggest a prefer-
ence for the AIC, KAIC, and KSIC over the SIC and PIC.
The KAIC and KSIC do slightly better than AIC in the
short-lag models but slightly worse in the long-lag models.
The AIC does slightly worse than KAIC, KSIC, SIC, and
PIC for the short-lag models, but much better than SIC and
PIC for the longer-lag models, and slightly better than
KAIC and KSIC for the long-lag models.

The most ambiguity about the preferred lag selection
criterion arises for the impulse response functions. For the
long-lag models, the AIC results are generally much closer
to the true impulse response functions than are the SIC and
PIC results. The AIC outperforms the KSIC for the long-lag
asymmetric-lag model by a large margin, but the results are
mixed for the long-lag symmetric-lag case. The abilities of
models with lags selected by AIC and KAIC to mimic the
true impulse response functions are very similar. The results
are di� cult to generalize for the short-lag models. For the
symmetric-lag model, no one criterion dominates. For the
asymmetric-lag model, the SIC, PIC, and KSIC do better
than the AIC and KAIC. It is thus di� cult to generalize
about the preferred lag selection technique when ability to
mimic the true impulse response function is the criterion.
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APPENDIX: DATA

The following series were used in the bivariate VAR models.
All series were taken from Citibase, and the Citibase name is
provided in parentheses. The transformations indicated
were required to render the models stationary. Quarterly
data from 1959:3± 1996:1 were used in all models except
model 4 where data availability dictated using the
1967:1 ± 1994:4 period.

1. The change in the log of nonborrowed reserves
(FMRNBA) and the change in the log of real GDP
(GDPQ).

2. The change in the log of M2 (FM2) and the change in
the rate of CPI (PUNEW) in¯ ation.

3. The unemployment rate (LHUR) and the change in the
log of the GDP de¯ ator (GDPDFC).

4. The change in the log of plant and equipment invest-
ment expenditures (IXIQ) and the change in the log of
the capacity utilization rate (IPX).

5. The spread between the 10-year Treasury note
(FYGT10) rate and the 3-month T-bill rate (FYGM3)
and the change in the log of real GDP.

6. The change in the di� erence between the log of the
GDP de¯ ator and the log of the producer price index
for crude oil (PW561) and the change in the log of
employment (LHNAG).

7. The change in the log of the bilateral US± Japanese
exchange rate (EXRJAN) and the rate of change in the
GDP de¯ ator.

8. The change in the log of real consumption (GCQ) and
the change in the log of real stock prices (FSPCOM/
(GDP De¯ ator/100)).

9. The change in the log of real private domestic invest-
ment (GPIQ) and the change in the log of real GDP.

10. The change in the log of the money multiplier
(FM2/FMRNBA) and the change in the log of real
GDP.

524 O. Ozcicek and W . D. McMillin
D

ow
nl

oa
de

d 
by

 [
L

ou
is

ia
na

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 2
0:

14
 2

0 
M

ay
 2

01
4 


