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Despite intensive investigation of the temporal stability of the Goldfeld formulation 
of the money demand function, a clear consensus on its stability has yet to emerge. 
This paper builds a statistical case supporting the first difference of log-levels spec- 
ification, as opposed to the more commonly used log-levels specification, of the 
Goldfeld equation and then examines the stability of both specifications. Formal 
stability tests proposed by Cooley and Prescott, Farley and Hinich, and Brown, 
Durbin, and Evans are employed; the out-of-sample predictive performance is ex- 
amined as well. These tests strongly support the first difference specification over 
the log-levels specification. 

1. Introduction 
The temporal stability of the standard Goldfeld (1973) for- 

mulation of the narrowly defined money demand function (see Ta- 
ble 1, Specification 1) has been investigated intensively in recent 
years [see, e.g., Goldfeld (1973, 1976); Boughton (1981); Hafer and 
Hein (1979, 1980); Porter, Simpson, and Mauskopf (1979); Laumas 
and Mehra (1976); and Laumas and Spencer (1980) for studies em- 
ploying this specification or some close variant thereofl. Yet, de- 
spite this research activity, a clear consensus on the stability of this 
function has yet to emerge. In view of the importance of the sta- 
bility properties of the money demand function to the formulation 
of optimal monetary policy [see Poole (1970)] and in light of the 
observation of Judd and Scadding (1982) that the Goldfeld function 
is “still the received version today,” further discussion of the sta- 
bility issues as they relate to the Goldfeld money demand function 
is warranted. 

Our primary objective is to build a statistical case supporting 
the first difference of log-levels specification (hereafter, first-dif- 
ference specification), as opposed to the more commonly used log- 
levels specification, of the Goldfeld equation and then to investi- 
gate the stability properties of the first-difference formulation. We 

*We are indebted to two anonymous referees and to M. M. Ali, T.R. Beard, 
G.S. Laumas, and J.A. Richardson for extremely helpful comments. 
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Specification, Stability of Money Demand 

are led to a first-difference specification due to econometric prob- 
lems encountered when the standard Goldfeld equation is estimated 
in log levels using the Cochrane-Orcutt technique.’ Then, given a 
sound statistical basis for choosing the first-difference specification, 
we investigate the stability properties of this specification and find, 
in contrast to the log-levels specification, consistent evidence across 
a wide variety of stability tests supporting the stability of the money 
demand function. 

The paper is organized in the following manner. In Section 2 
we review recent studies which provide conflicting evidence on the 
stability of the log-levels specification of the money demand fimc- 
tion. In Section 3, we provide a detailed econometric analysis of 
the Cochrane-Orcutt estimates of the log-level specification of the 
Goldfeld money demand function. In the process, we obtain several 
plausible explanations for the conflicting conclusions regarding the 
stability of the Goldfeld equation. In Section 4, we report the re- 
sults of various tests of the stability of the first-difference speci- 
fication and compare these results with those of the log-level equa- 
tion. Formal stability tests employed are those proposed by Brown, 
Durbin, and Evans (1975), Cooley and Prescott (1973a,b; 1976), and 
Farley and Hinich (1975). Results of informal but widely employed 
tests, the out-of-sample predictive performance from both static and 
dynamic simulations, are also reported in this section, Finally, the 
results of the paper are summarized in Section 5. 

2. Review of Previous Studies of the Stability of the Money 
Demand Function 

The stability of the Goldfeld equation or a close variant thereof 
has been investigated using a variety of techniques, including out- 
of-sample predictive performance [Goldfeld (1973, 1976)], the Brown- 
Durbin-Evans cusum-of-squares test [ Hafer and Hein (1979), 
Boughton (1981), Fackler and Wheeler (1982)], and the Cooley- 
Prescott varying parameter regression technique [Laumas and Mehra 
(1976)]. As summarized in Table 1, these authors report divergent 
equations and stability conclusions. Goldfeld, Boughton, and Fack- 
ler and Wheeler conclude that the function is unstable while both 
Hafer and Hein, and Laumas and Mehra conclude in favor of sta- 

‘Recent major studies estimating the Goldfeld money demand fimction with 
Cochrane-Orcutt include Goldfeld (1973, 1976) Boughton (1981), Hafer and Hein 
(1979, 1980), and Porter, Simpson, and Mauskoff (1979). 
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bility.’ With the exception of Fackler and Wheeler, the formal sta- 
bility tests (Brown-Durbin-Evans and Cooley-Prescott) suggest 
stability while the informal tests (dynamic simulations and coeffi- 
cient plots) suggest instability. One possible source of these dis- 
parities is the fact that different sample periods are used. However, 
most of the studies employ what may be viewed as an inappropriate 
coefficient estimator3 which may also contribute to the divergence 
of opinion with regard to stability. Conclusions may also differ since 
some authors estimate modified Goldfeld equations. Finally, and of 
particular interest to us, is the fact that various authors report quite 
different estimates of rho.4 

As Judd and &adding (1982) note, evidence of instability in 
the Goldfeld equation has been rationalized by the emergence of 
money substitutes and rapid financial innovation in the 1970s. These 
events are asserted to have reduced money demand as economic 
units have shifted out of currency and demand deposits into new 
assets like NOW accounts and as firms have employed cash man- 
agement techniques to reduce demand deposit holdings. However, 
as Judd and Scadding suggest, there are doubts about the contri- 
bution of money substitute growth and financial innovation to the 
hypothesized instability of the Goldfeld function. For example, the 
interest-rate ratchet variable introduced by Goldfeld (1976) to cap- 
ture the effects of financial innovation on money demand did not 
improve the performance of the equation in dynamic out-of-sample 

‘Cargill and Meyer (1979) employ the systematic parameter evolution model and 
the state variable model to analyze twenty-four different specifications of money 
demand. On balance, their results support instability. 

In interpreting the Hafer-Hein and Boughton results, it should be noted that 
the statistical properties of the Brown-Durbin-Evans test in the presence of a 
lagged dependent variable have not been developed [see Brown, Durbin, and Ev- 
ans (1975)]. Thus the results of this test are suggestive at best. Furthermore, the 
Brown-Durbin-Evans test requires the absence of serial correlation and the stud- 
ies that use this test constrain rho to be a single value over the entire sample 
period. However, estimates of rho differ greatly over different sample periods and 
over subsets of a particular sample period (see footnote 4) so that this, constraint 
would appear to be inappropriate. 

%pecifically, the Cochrane-Orcutt technique does not yield consistent or effi- 
cient parameter estimates in the presence of serial correlation and a lagged de- 
pendent variable. A technique developed by Hatanaka (1974) does, however, yield 
consistent and asymptotically efficient parameter estimates. Hatanaka’s technique 
has recently been used by Laumas and Spencer (1980) and Fackler and Wheeler 
(1982). 

‘The values of rho are 0.35, 0.44, 0.92, and 0.30 for Goldfeld, Hafer and Hein 
(1955&1972io), Hafer and Hein (1955%1979i), and Boughton, respectively. 
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simulations over 1974-1976. Furthermore, the static simulation evi- 
dence of Hein (1980) is inconsistent with the financial innovation 
hypothesis which implies continuing shifts in money demand. Like- 
wise, the log-level demand function with money defined as Ml plus 
RPs and Ml plus RPs and money market funds estimated by Por- 
ter, Simpson, and Mauskopf (1979) over-predicts money demand. 
Finally, although the same factors that led to financial innovation 
and the growth of money substitutes in the United States-high 
interest rates and inflation-existed abroad, evidence from other 
countries suggests that with the exception of Canada money de- 
mand remained stable in these other countries. Based upon these 
considerations and the diverse results from the stability tests, it ap- 
pears that the stability and specification of the demand for narrowly 
defined money balances is still an open question. 

3. Estimation of the Standard Goldfeld Equation 
Given that the authors of the recent literature invariably es- 

timate short-run money demand functions with the Cochrane-Orcutt 
estimator, it is instructive to investigate some of the characteristics 
of the resulting equations. Accordingly, in this section we examine 
the implications of estimating the Goldfeld money demand function 
by means of the Cochrane-Orcutt and GLS (Prais-Winsten) tech- 
niques. In addition, we also consider the standard errors of regres- 
sions estimated over various sample periods as well as a typical re- 
sidual-sum-of-squares (RSS) surface. 

Estimates for a variety of equations are presented in Table 2. 
All data are quarterly, with the dependent variable being real (old) 
Ml. This concept of money is used since it is the definition under 
investigation in virtually all the literature on the instability of the 
money demand function; it was, after all, old Ml which was the 
policy target at the time of the alleged shifts in money demand in 
the 1970s. We employed the gross national product deflator to de- 
flate both Ml and nominal GNP. The commercial paper rate used 
is the rate on 4-6 month paper and the rate paid on time deposits 
is from the FMP data base. 

Each equation, in isolation, appears acceptable on most grounds. 
However, taken as a group, it is evident that the various estimates 
of the serial correlation coefficient, rho, vary widely with changes 
in the sample period and depend upon the estimation method cho- 
sen; estimated values of rho either fall in the range between 0.39 
and 0.47 or else they exceed 0.9. For 1952ii-1973io, the Cochrane- 
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TABLE 2. Moneu-Demand-Function Coefficient Estimates (Gold- 

Sample Period 
Estimation Lagged Real 
Technique Constant Money GNP 

195%-1973iu Cochrane-Orcutt 

1952ii-1973iu GLS 

1952&1976iu Cochrane-Orcutt 

1952ii-1976iu GLS 

1952&1978iu Cochrane-Orcutt 

1952ii-1978iu GLS 

0.682 
(3.80) 
0.741 
(3.99) 
1.075 

(3.W 
1.107 

(3-W 
-0.057 

(0.39) 
1.299 

(3.30) 

0.659 
(9.61) 
0.634 
(9.W 
0.610 
(7.83) 
0.604 
(7.73) 
0.994 

(28.16) 
0.580 
(7.24) 

0.183 
(5.62) 
0.195 
(5.91) 
0.162 
(4.93) 
0.163 
(4.93) 
0.159 
(1.21) 
0.154 
(4.57) 

‘Natural logs of all variables are employed in the estimation. 
bAbsolute values of t-statistics are in parentheses. 
‘Data used in this paper were obtained from the following sources: Ml and the 

Orcutt method yields a rho estimate of 0.39 while the GLS method 
yields an estimate of 0.43.5 For 1952ii-1976iu both the Cochrane- 
Orcutt and GLS methods select a rho of 0.91. Finally, for 1952ii- 
1978iu, the estimates of rho are 0.47 and 0.95 for the Cochrane- 
Orcutt and GLS methods, respectively. 

Of particular interest is the distinction between the Coch- 
rane-Orcutt and GLS estimates for the money-demand function over 
the period 1952ii-1978iu. The Cochrane-Orcutt technique, em- 
ployed in a commonly-used software package, selected a rho value, 
0.47, that corresponds to a local minimum of the RSS surface (dis- 
cussed further, and plotted, below). Further, note that the two 
different estimation methods imply substantially different point es- 
timates of the speed of adjustment of actual to desired money bal- 
ances. 

‘The GLS‘method was implemented by varying rho in increments of 0.01. Rho 
was then selected as the value that minimized the residual sum of squares. The 
approximate standard error for rho estimated by the GLS method was computed 
by the method described by Nelson (1973). The calculated standard error of rho 
= 0.43 is 0.11. An approximate 95-percent confidence interva can be constructed 
as 0.43 2 0.22. Thus the estimate of rho from the Cochrane-Orcutt method falls 
within the confidence interval for the GLS estimate of rho over 1952%1973io. 
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.feld Spec$i~ation)“.b~c 

Time 
Commercial Deposit 
Paver Rate Rate R2 h SE 

Number of 
Rho Observations 

-0.018 -0.044 0.994 1.32 0.0041 0.39 86 
(6.30) (4.16) 

-0.017 -0.049 0.999 1.60 0.0042 0.43 87 
(5.87) (4.65) 

-0.012 -0.045 0.991 0.08 0.0050 0.91 98 
(2.98) (2.81) 

-0.012 -0.048 0.999 0.08 0.0050 0.91 99 
(2.97) (3.39) 

-0.018 0.008 0.990 0.17 0.0052 0.47 106 
(5.27) (0.126) 

-0.013 -0.048 0.999 0.09 0.0051 0.95 107 
(3.18) (3.14) 

commercial paper (4-6 month) rate: Federal Reset-we Bulktin, various issues; the 
time deposit rate: FMP data base; real GNP and the implicit GNP deflator (used 
to deflate Ml): Sutwey of Current Business, various issues. 

An examination of the RSS surface for the GLS method sheds 
some light on why the estimated rho changes so dramatically (see 
Figure 1). The RSS surface is obtained from GLS estimates of the 
Goldfeld equation in which rho is varied in increments of 0.01. As 
is evident, the surface is very flat over this range of rho values. A 
local minimum is found at rho = 0.53 but the global minimum is 
found at rho = 0.95.6 However, the total variation in the RSS val- 
ues from the local minimum to the global minimum is only 0.09011 
(4 percent of the value of the residual sum of squares at p = 0.95). 
Because of the flatness of this surface, noted in passing by Fackler 
and Wheeler (1982), it is not only easy to see how a technique such 
as Cochrane-Orcutt can select a rho corresponding to a local min- 
imum, but also that this technique may lead to misleading param- 
eter estimates. 

For our estimates, not only does the value of rho vary across 
sample periods and estimation techniques but the estimated value 

‘For this period the estimated standard error of rho = 0.53 (which corresponds 
to the local minimum) is 0.17 and the approximate 95percent confidence interval 
is thus 0.53 f 0.34. The estimate of rho obtained from the Cochrane-Orcutt method 
is 0.47 and is within the confidence interval for the GLS estimate of rho. 
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Figure 1. 
Residual Sum of Squares of the Goldfeld Money Demand Function, 

1952ii-197&u 

rho 
1 I I I I I I 

0.4 0.5 0.53* 0.6 0.7 0.8 0.9 0.957 1.0 

l Locol Minimum 

t Global Minimum 

of the RSS also varies across sample periods. For example, for the 
period 1952ii-1973iu the RSS is 0.00137 for the Cochrane-Orcutt 
method and 0.00144 for the GLS method. For the period 1952G 
1978iu, however, the RSS is 0.00270 for the Cochrane-Orcutt method 
and 0.00266 for the GLS method. Thus the RSS has virtually dou- 
bled for both the Cochrane-Orcutt and GLS methods with the ad- 
dition of five years of data. Furthermore, as implied by the change 
in the RSS, the value of the standard error of the regression has 
increased by 25 percent as the sample was extended from 1973iu 
to 197&u (see Table 2). 

The dramatic changes in rho, the RSS, and the standard error 
of the regression as the sample is extended are suggestive of some 
type of misspecification of the equation. Given an apparent mis- 
specification, search for the proper specification can head in at least 
two directions. One alternative is to respecify the variables entering 
the equation, including redefining the dependent variable to ac- 
count for recent financial innovations. As noted above, there are a 
number of reasons which may discount the financial innovations ex- 
planation of misspecification of the money demand function. A gen- 
eral discussion is included in Judd and Scadding (1982), while ar- 
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titles of specific interest include Hafer and Hein (1979); Enzler, 
Johnson, and Paulus (1976); and Goldfeld (1973, 1976).’ As Hafer 
and Hein (1979) note, however, none of the alternative specifica- 
tions which they have analyzed is stable over the period 1955ii- 
1977i and this is also emphasized by Judd and Scadding (1982). 

A second potential source of misspecification is the functional 
form employed in the estimation. We have already documented that 
researchers who have used the Cochrane-Orcutt estimation pro- 
cedure may well have reported parameter estimates which corre- 
spond to a local rather than a global minimum of the RSS surface. 
Indeed, a search technique over values of rho shows that, for the 
time periods ending in 1976io and 1978io, the RSS is minimized 
for values of rho in excess of 0.9. Thus, one alternative specifica- 
tion suggested by the data is to employ first-differences of the vari- 
ables in the estimation. 

Aside from the evidence contained in the estimated values of 
rho supporting first differences, use of this specification is sug- 
gested, generally, by the well-known paper of Granger and New- 
bold (1974). G ran er and Newbold argue that a first-difference g 
specification is likely to be useful when the series under analysis 
are relatively smooth, since in this case the first-order serial cor- 
relation coefficient will be near unity. Inspection of the data series 
employed in this study suggests the existence of significant trends 
in the data. Thus, estimation of the first-difference of the equation 
may be a promising alternative. 

Despite the argument in the preceding paragraph, it is nec- 
essary to proceed cautiously to estimation of first-differences. Gran- 
ger and Newbold (p. 118) are careful to point out that they “are 
not advocating first differencing as a universal sure-fire solution to 
any problem encountered in applied econometric work’; indeed the 
danger in blithely proceeding to a first-difference specification is 
carefully developed in Hendry and Mizon (1978), who distinguish 
between testing for common roots and testing whether common roots, 
if they exist, are unity. In the Hendry-Mizon analysis, the re- 
searcher formally can test for whether a common root of unity ex- 
ists (in which case differencing is appropriate) rather than impres- 
sionistically assuming that, since the data are trending, first 
differences are appropriate. In contrast, Williams (1978) argues that 

‘The results of estimating and simulating Goldfeld equations for old Ml plus 
RPs and money market mutual funds is found in Porter, Simpson, and Mauskopf 
(1979). These results are very similar to the Ml results; demand for these variables 
is consistently overpredicted for the respecified Goldfeld equations. 
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first-differencing is an assumption which is not amenable to em- 
pirical testing. His argument proceeds by noting that “the esti- 
mated variance of the error structure will always be finite irre- 
spective of whether or not the theoretical variance is finite” (p. 
564; emphasis in original). Thus, the Hendry-Mizon technique, which 
proceeds by transforming a levels equation into a first-difference 
form and a remainder which includes lagged values of the levels 
of the variables, must assume that the error structure in the levels 
form is stationary. Of course, such an assumption cannot be veri- 
fied with a finite data set. 

Thus, while it may not be possible to prove that the first- 
difference formulation is appropriate, since the results from the grid 
search over rho strongly suggest such a form, we proceed by es- 
timating first-difference equations. The results from this estimation 
are presented in Table 3. The coefficients are of the anticipated 
sign and the h-statistics indicate the absence of serial correlation. 
We note that these equations differ in a number of important ways 
from the log-level equations reported in Table 2. First, the constant 
term was never significant and was dropped from each equation. 
Second, the first-difference equation coefficients differ substantially 
from the log-levels coefficients estimated by the Cochrane-Orcutt 
technique. Third, the standard error (SE) of the first-difference 
equation rises only 6 percent when the sample is extended from 
1973iu to 1976iu and then to 197&u, in sharp contrast to the GLS 
log-level equation where the SE jumps by 19 percent when the 
sample is extended from 1973iu to 1976iu and 21 percent when the 
sample is increased from 1973iu to 197%. In light of the differ- 
ences between the log-levels and first-difference specifications, it 
should be instructive to examine the stability properties and pre- 
dictive performances of each. We undertake these tasks in the next 
section. 

4. Stability of the First-Difference and Levels Specifications 
In this section we subject the first-difference and levels spec- 

ifications of the Goldfeld equation to a wide variety of stability tests. 
Two of these tests, out-of-sample predictive performance from both 
static and dynamic simulations, are informal, though widely used, 
stability tests. In addition, the stability properties of the various 
equations are tested using the Farley-Hinich (1975), the Cooley- 
Prescott (1973a, b; 1976), and Brown-Durbin-Evans (1973) stability 
tests. We investigate these tests in turn. 
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Dynamic and Static Simulation Results 
One informal method of evaluating the stability of the money 

demand function that has, in previous studies, suggested instability 
in the post-1974 period is the evaluation of forecast errors from out- 
of-sample dynamic simulations of the money demand function. This 
method has become widely used after Goldfeld’s 1973 article. The 
use of dynamic out-of-sample simulations has recently been criti- 
cized by Hein (1980). He suggests that forecasts from static simu- 
lations are preferable to dynamic simulation forecasts since dynamic 
simulations tend to perpetuate once-and-for-all shifts into continu- 
ing shifts. Nonetheless, we believe that dynamic simulations pro- 
vide useful information, in addition to that contained in static sim- 
ulations, in evaluating the money demand function. This is so since 
the Federal Reserve, in formulating policy, is interested in forecasts 
of money demand (as well as other variables) for the next one or 
two years. The Fed should thus be interested in the dynamic fore- 
casting properties of the money demand function as well as the 
static forecasting ability of the equation. Based upon these consid- 
erations, the summary statistics from both static and dynamid sim- 
ulations for both the first-difference and log-levels specifications are 
presented in Table 4. The GLS estimates are used for the log-level 
simulations. 

The summary statistics in Table 4 are based upon forecasts of 
the log level of real money demand; to obtain comparable forecasts 
the first-difference and log-levels equations must both be trans- 
formed so that the log-level of real money balances is the left hand 
variable. Thus the simulation results in Table 4 are derived from 

In m, =h$ (1 - 0) + (cil + p) In rntel 

- (@) In rnrm2 + a2(ln yt - 0 In yt-J 

+ d3 (In RCP, - 0 In RCP,-1) 

+ d4 (In RTD, - 0 In RTD,-r), 

where for first differences, rho is constrained to unity. 
As can be seen from Table 4, there are sharp differences be- 

tween the forecast performances of the first-difference and levels 
equations. The equation estimated over 1952ii-1973iu is simulated 
over 1974i-1976ii [Goldfeld’s (1976) simulation period] and over 
1974i-1978iv. For both the dynamic and static simulations the first- 
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difference equation out-performs the levels equation in terms of 
both the root-mean-square error and the root-mean-square percent 
error.’ The static simulation errors are, as expected, smaller than 
the dynamic simulation errors. The equation estimated over the pe- 
riod 1952ii-1976iu is simulated over 1977&197&u. Again, for both 
the static and dynamic simulations, the first-difference equation out- 
performs the levels equation. Furthermore, the simulation perfor- 
mance of the levels equation has worsened relative to the equation 
estimated over the earlier period while the first-difference results 
are relatively better.’ Based upon these results, the first-difference 
specification is preferred to the levels specification. 

Farley-Hinich Test Results 
The first formal stability test employed is the Farley-Hinich 

test. In this test, the coefficients that are thought to be unstable 
are treated as linear functions of time. Thus, if coefficient ai is 
thought to be unstable, it is modeled as 

ai = a: + yit, 

with t = 1, . . ., n, and where n is the number of observations 
in the sample. This test adds to the basic equation variables of the 
form tx where x is a variable whose coefficient is suspected of insta- 
bility. The coefficients (yi) on these variables are then jointly tested 
for significance from zero; under the null hypothesis that the coef- 
ficients are zero an F-test is appropriate. For example, if the coef- 

‘Since the estimated equations have been transformed so that In m, is the left- 
hand variable, the root-mean-square errors (RMSE) cannot be directly compared to 
the standard errors of the estimated equations. A priori the transformation made 
here should increase the RMSE relative to the standard errors; this is observed 
here. 

‘In terms of the dynamic simulations, the root-mean-square errors (RMSE) and 
root-mean-square percent errors (RMSE%) are much larger over the ten-quarter 
simulation period for the equation estimated through 1976io than for that estimated 
through 197310. In particular, the forecast error for 19771 is very large for the for- 
mer equation (due primarily to the size of the constant term for the equation es- 
timated through 1976(u) and hence is carried forward to subsequent periods, thus 
accounting for the dynamic simulation RMSE of 7.97 and 146.38%. However, the 
RMSE and RMSE% for the static simulations are about three times larger than for 
the earlier period. When the constant term for this equation is suppressed even 
though it is statistically significant, the RMSE falls to 0.76 (dynamic) and 0.10 (static) 
and the RMSEB falls to 14.4 (dynamic) and 1.78 (static). In conjunction with the 
performance of the first-difference equation, these results indicate a preference for 
the first-difference specification. 
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ficient on the commercial paper rate is suspected to be unstable, 
then the equation 

In m, = a0 + al In rntml + a2 In yt + at In RCP, 

+ y3(t In RCP,) + a4 In RTD, + e, 

is estimated and the significance of the coefficient y3 on the in- 
teraction variable (t In RCP,) is tested. Since we had no strong prior 
beliefs as to which coefficients were unstable, each coefficient was 
separately treated as unstable. Then a joint test of instability was 
performed. For the first-difference specification, for all these vari- 
ables and for all sample periods, the null hypotheses that the coef- 
ficients on these variables each equaled zero could not be rejected 
at the 5-percent level. Furthermore, for all sample periods, when 
these variables were simultaneously added to the first-difference 
specification the hypothesis that the coefficients jointly equaled zero 
could not be rejected.” 

The same variables were added to the levels specification over 
each sample period. For 1952ii-1973iu the hypothesis that each 
coefficient separately equaled zero and the hypothesis that the coef- 
ficients jointly equaled zero could not be rejected.” For 1952ii- 
1976ic the same hypothesis was separately rejected for time, the 
product of time and real GNP, and the product of time and the 
time deposit rate at the 5-percent level and for the product of time 
and the lagged money stock at the lo-percent level. However, a 
joint test revealed that the hypothesis that these coefficients were 
jointly equal to zero could not be rejected. For 1952&1978iu re- 
sults similar to those 1952ii-1976iu were obtained. The coefficients 
on time and the products of time with the lagged money stock, 

“For the period 1952&1973ic;, the null hypothesis can be rejected at the lo- 
percent level for the variable represented by the product of time and the first 
difference of the natural log of the rate on time deposits. For 1952&1976io, the 
null hypotheses can be marginally rejected at the lo-percent level for the coeffi- 
cients on time itself and on the products of time and the first differences of the 
natural logs of the lagged money stock and the commercial paper rate. For 1952ii- 
1978io the null hypothesis can be rejected at the lo-percent level for the coefficient 

on time. 
“The particular variables added to the levels specification in each period are 

the products of time and the quasi-difference of the natural log of the explanatory 
variable, where the quasi-difference is found using fi, the GLS estimate of the 
autocorrelation coefficient. 
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real GNP and the time deposit rate were found to be significantly 
different from zero. 

Thus over each sample period the test indicated that the first- 
difference specification is stable. For the levels specification the 
evidence is mixed. When the Farley-Hinich variables are sepa- 
rately added to the equation instability is found for 1952&1976iu 
and 1952ii-1978iu. Joint tests of the coefficients separately found 
to be unstable, however, suggest stability. These contradictory re- 
sults for the levels specification are puzzling, though one possibility 
is implicit in Farley, Hinich and McGuire (1975), who point out 
that the Farley-Hinich test is robust for gradual shifts in the pa- 
rameters. It may be that single shifts occurred for some variables 
or that a more complicated pattern than the linear scheme modeled 
here occurred over these periods. Rather than model the parame- 
ters as quadratic or higher order polynomials in time as Farley, 
Hinich and McGuire (1975) suggest might be done to test for mul- 
tiple shifts or erratic drifts, it was decided to bring other formal 
stability tests to bear on this issue. It is worth emphasizing that 
both the separate and joint tests for the first-difference specification 
suggest stability over time. 

Cooley-Prescott Estimation Results 
The second formal stability test employed here is based upon 

the varying parameter regression model of Cooley and Prescott 
(1973a,b; 1976). Within this framework, two types of parameter 
variation are considered: permanent and transitory, with the per- 
manent component allowing for drift in parameter values over time. 
Given a model yt = x,a,, t = 1, . . ., n, where x, is a vector of 
observations on the explanatory variables and a, is a conformable 
vector of coefficients subject to stochastic variation, the sources of 
coefficient variation are modeled as 

a: = a&1 + vt , 

where a: is the permanent component of the coefficient vector, pt 
and ut are independent, normally distributed random variables with 
mean vector equal to zero and covariance matrices cov(pt) = (1 - 
y) 02 X, and cov(vt) = &&,. X, and X, are assumed to be known 
up to some scale factor. The relative magnitude of permanent and 
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transitory changes in the coefficients is reflected by y, with y close 
to 1 indicating that permanent changes are large relative to tran- 
sitory changes. Under the null hypothesis that y = 0 (coefficient 
vector is not subject to permanent changes), y/c?(q) is normally dis- 
tributed with mean equal to zero and variance equal to 1. The sym- 
bol 9 is the maximum-likelihood estimate of y and S(9) the asso- 
ciated standard error. 

Because the process generating the coefficients is not station- 
ary, a likelihood function cannot be specified. A likelihood function 
conditional on the value of the coefficient process at a particular 
time can, however, be defined. Cooley and Prescott suggest that 
the most convenient procedure for obtaining the conditional like- 
lihood function is to focus on the value of the coefficient process 
one period past the sample. Thus in testing stability, as Laumas 
and Mehra (1976) point out, it is appropriate to reestimate the coef- 
ficients by varying the sample period. 

In order to apply the Cooley-Prescott model it is necessary 
to specify 2, and 2,. Cooley and Prescott (1973a) suggest that, 
unless one has knowledge to the contrary, the assumption that the 
relative importance of permanent and transitory changes is the same 
is reasonable. That is, they argue that the assumption that 2, = 
ISI;, is reasonable and that, unless one suspects that the random 
changes in the coefficients are correlated, Z, and II, can be as- 
sumed to be diagonal. Cooley and Prescott also suggest that nu- 
merical values for the elements IS,, = IS, = Z can be obtained from 
the estimates of the equation based upon the assumption of con- 
stant coefficients. These suggestions are followed here. 

The varying parameter regressions are applied to the first-dif- 
ference equation with and without a constant and to the levels 
equations. The estimates of y, u(y), and 2 are reported in Table 5 
along with the various specifications of Z. Cooley and Prescott note 
that setting the variance of the constant equal to unity is an alter- 
native to the standard assumption of the first-order serial correla- 
tion of the error term and is more general since this latter as- 
sumption presumes that the effects of all omitted variables decline 
exponentially at the same rate. Based upon this, the specification 
of 2 for the levels equation sets the variance of the constant equal 
to one. 

The results presented in Table 5 suggest that the first-differ- 
ence specification (with and without the constant) is stable while 
the levels specification is unstable for the periods ending in 1976ia 
and 1978iv. As with our previous tests, we again find reason to 
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believe that the first-difference equation is stable while the levels 
specification is not. l2 

Brown-Durbin-Evans &sum-of-Squares Results 
A final formal stability test used in this study is the cusum- 

of-squares test of Brown, Durbin and Evans (1975). This test in- 
volves the calculation of squared one-period forecast errors from 
recursive regressions. If the regression relation is stable, these fore- 
cast errors should cumulate at an approximately constant rate. Sta- 
bility is tested by computing the cusum-of-squares statistic and 
comparing the value of this statistic with a critical value. The Brown- 
Durbin-Evans test was performed for the first-difference specifi- 
cation for the periods 1952ii-1973iz;, 1952ii-1976iu, and 1952ii- 
1978iz;, and the cusum-of-squares statistics for these specifications 
are given in Table 6. 

In implementing the test for the log-level specifications, it is 
necessary to assume that the serial correlation coefficient is constant 
over the sample period since the Brown-Durbin-Evans test re- 
quires the absence of serially correlated errors. However, estima- 
tion of the log-levels equation over various subperiods yields di- 
vergent estimates of the serial correlation coefficient so that 
application of the same serial correlation coefficient over the entire 

TABLE 6. Cusum-of-Squares Statistics 

Period 

1952ii-1973iv 1952ii-1976iv 1952ii-1978io 

First-Difference 
without Intercept 

First-Difference 
with Intercept 

Log-Level 
GLS 
Cochrane-Orcutt 

0.090 0.155 0.151 

0.087 0.146 0.141 

0.091 0.178*** 0.167*** 
0.106 0. K37** 0.311* 

*Significant at l-percent; **significant at Spercent level; ***significant at lo- 
percent level. 

‘“An interesting extension of the Cooley-Prescott technique is provided by Swamy, 
Tinsley, and Moore (1982) who augment the Cooley-Prescott estimator with the 
Kafman filter. They find substantial volatility in the coefficients in the levels equa- 
tion through time. 
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sample period is not strictly appropriate. Furthermore, the prop- 
erties of this test in the presence of a lagged dependent variable 
are not known so that the results in Table 6 are at best suggestive. 
The cusum-of-squares statistics for all periods are not significant for 
either of the first-difference specifications, thereby leading to non- 
rejection of the hypothesis of stability. For the GLS estimates, the 
hypothesis of stability can be rejected at the lo-percent level for 
1952ii-1976iu and 1952&1978iu but cannot be rejected for 1952ii- 
1973iu. For the Cochrane-Orcutt estimates, stability can be re- 
jected at the 5-percent and l-percent levels for 1952&1976iu and 
1952&1978iu, respectively, but cannot be rejected for 1952&1973iu. 
These results suggest a preference for the first-difference specifi- 
cation. 

5. Summary and Conclusions 
The aim of this paper has been to thoroughly investigate an 

alternative specification, and the stability over time, of the Gold- 
feld function of the demand for money. Taken separately, the evi- 
dence from each test presented here is suggestive that the first- 
difference specification is preferred to the log-levels specification. 
Considered jointly, the evidence presented here strongly suggests 
a preference for the first-difference specification over the standard 
Goldfeld specification. In terms of dynamic and static out-of-sample 
simulation performance the first-difference specification sharply out- 
performs the log-levels specification. Furthermore, the Farley- 
Hinich, Brown-Durbin-Evans, and Cooley-Prescott stability tests 
indicate that the first-difference specification is stable over time while 
the log-levels specification is temporally unstable. We regard the 
poor performance of the log-level equation not as an indication of 
some fundamental instability in the money demand function but 
rather as evidence of misspecification of the Goldfeld equation, evi- 
dence supported by the flat residual sum-of-squares surfaces and 
the corresponding propensity for the Cochrane-Orcutt technique to 
converge to a local rather than a global minimum. We do not argue 
that the first-difference specification employed here is the “best” 
specification but rather that, given the explanatory variables in the 
standard Goldfeld equation, the first-difference specification is pre- 
ferred to the log-level specification. Other research topics within 
this specification include the investigation of alternative scale vari- 
ables and alternative rates of return and the effect of possible si- 
multaneity bias on the estimates. For a recent perspective on the 
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simultaneity issue see Cooley and LeRoy (1981). These issues are, 
however, beyond the scope of this paper. 
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